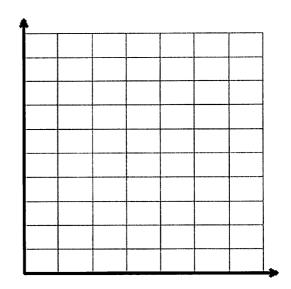
Solving Systems by Graphing

Two or more linear equations together form a **system of linear equations**. One way to solve a system of linear equations is by graphing each equation and looking to see if the lines have any point in common. Common points that make each equation true would be a **solution to the system of linear equations**.

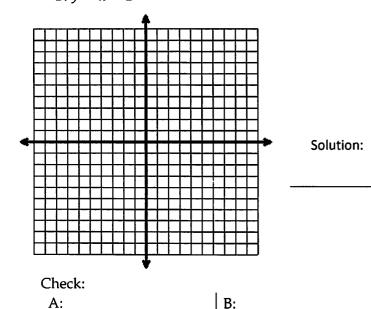
Suppose you have \$20 in your bank account and deposit \$5 each week. Your friend has \$5 in her account and deposits \$10 each week. When will you and your friend have the same amount of money in your accounts?


Linear Equations

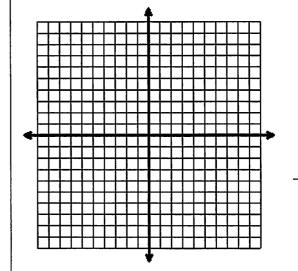
You: _____

Friend: _____

Coordinate Where the Lines Cross:


What does this mean?

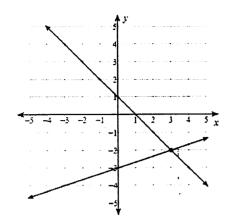
Examples: Solve by Graphing


1. A:
$$y = 2x - 3$$

B:
$$y = x - 1$$

2. A:
$$y = -\frac{1}{2}x + 2$$

$$B: 3y = -9x - 9$$

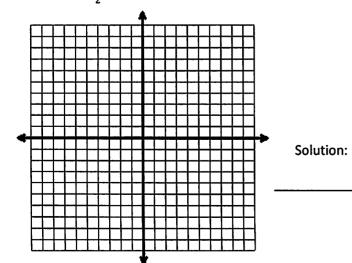


A:

Solution:

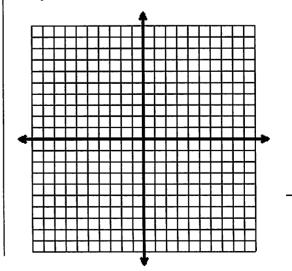
B:

Determine Each Equation and Solution to the System of Equations Graphed Below



Check to Make Sure The Solution Works in BOTH Equations	Check a Point that Lies on One of the Lines but Not the Other	Check a Point That Doesn't Lie on Either Line
Check:	Check:	Check:
Check	Check	Check

On Your Own:


1. A:
$$y = 3x - 4$$

B:
$$y = -\frac{1}{2}x + 3$$

2. A:
$$y = 4x + 3$$

B:
$$y = -x - 2$$

Solution:

Solving Systems by Graphing

Two or more linear equations together form a system of linear equations. One way to solve a system of linear equations is by graphing each equation and looking to see if the lines have any point in common. Common points that make each equation true would be a solution to the system of linear equations.

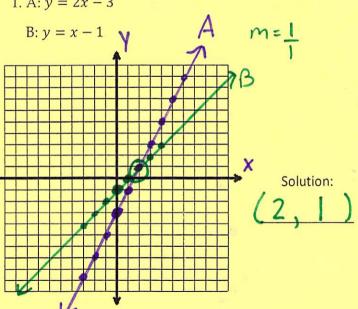
Suppose you have \$20 in your bank account and deposit \$5 each week. Your friend has \$5 in her account and deposits \$10 each week. When will you and your friend have the same amount of money in your accounts?

Linear Equations

You: V = 5x + 20

Friend: V = 10x + 5

Coordinate Where the Lines Cross: (3,35)


What does this mean?

have \$ 35.

50 45 40 35 25 15 10 S Weeks

Examples: Solve by Graphing

1. A: y = 2x - 3

Check: Y=2x-3 2. A: $y = -\frac{1}{2}x + 2$ B: 3y = -9x - 9Solution:

Y=- = x+Z

Determine Each Equation and Solution to the System of Equations Graphed Below

Y-int:
$$(0,-3)$$
 Solution: $(3,-2)$
Slope: $\frac{1}{3} = \frac{1}{3}$

Check to Make Sure The Solution Works in BOTH Equations

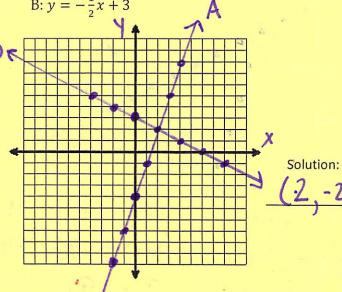
$$(3, -2)$$

- Check $Y = \frac{3}{3}x - 3$ - 2 = $\frac{3}{3}(3) - 3$

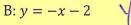
$$-2=\frac{3}{3}(3)-3$$

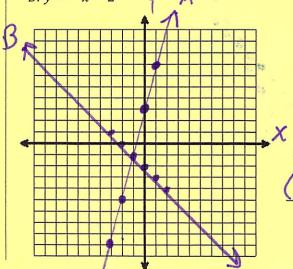
On Your Own: = -2

Check a Point that Lies on One of the Lines but Not the Other


$$Y = \frac{1}{3}x - 3$$

$$1 = \frac{1}{3}(0) - 3$$
 $1 = -3$


Check a Point That Doesn't Lie on Either Line


1. A: y = 3x - 4

B:
$$y = -\frac{1}{2}x + 3$$

2. A:
$$y = 4x + 3$$

Solution:

